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do 11 j=3,nl
fi=d
f2=f2+twox
d=d+1.
pl(§)=(£2*pl(j-1)-f1xpl(j-2))/d
enddo 11
endif
return
END

Multidimensional Fits

If you are measuring a single variables a function of more than one variable
— say, avector of variablesx, then your basis functions will be functions of a vector,

X1(X), ..., Xp(x). The x? merit function is now
2 _ i Yi — chwzl a’ka(Xi) ’ (15 4 24
o i=1 i -

All of the preceding discussion goes through unchanged, witkplaced byx. In

fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In bollfit andsvdfit, the only use made

of the array elements(i) is that each element is in turn passed to the user-supplied
routinefuncs, which duly returns the values of the basis functions at that point. If

you setx (i)=1i before callinglfit or svdfit, and independently providéuncs

with the true vector values of your data points (e.g., @0EMON block), thenfuncs

can translate from the fictitious(i) s to the actual data points before doing its work.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 8-9.

Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.
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We now consider fitting when the model dependaslinearly on the set of\/
unknown parameteis;, k = 1,2, ..., M. We use the same approach as in previous
sections, namely to define @ merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given trial values for the parameters, we develop a procedure
that improves the trial solution. The procedure is then repeated yftitops (or
effectively stops) decreasing.

‘aremyos sadioay [eauswnN Aq z66T-986T (D) WbuAdoD sweiboid 'ssald Ausianiun abpugwe)d Aq z66T-986T (D) WbuLAdoD
(X-¥90€¥-T2S-0 NESI) ONILNINOD DIHILNIIOS 40 L8V IHL 22 NVHLHOd NI S3dI03Y TvOI4INNN woly obed sjdwes



676 Chapter 15.  Modeling of Data

How is this problem different from the general nonlinear function minimization
problem already dealt with in Chapter 10? Superficially, not at all: Sufficiently
close to the minimum, we expect the’ function to be well approximated by a
guadratic form, which we can write as

XQ(a)my—d~a+%a~D~a (15.5.3

:dny

whered is an M-vector andD is anM x M matrix. (Compare equation 10.6.1.)
If the approximation is a good one, we know how to jump from the current trial
parameters.,, to the minimizing onesy,;, in a single leap, namely

Amin = Acur + D71+ [- VX (Acur) | (15.5.2

(Compare equation 10.7.4.)

On the other hand, (15.5.1) might be a poor local approximation to the shape
of the function that we are trying to minimize at,,. In that case, about all we
can do is take a step down the gradient, as in the steepest descent njathéyl (
In other words,

/-2/8-008-T |Ied 10 WO Iu" MMM/

Bnext = Bcur — CONStantx Vx?(acur) (15.5.3

where the constant is small enough not to exhaust the downhill direction.
To use (15.5.2) or (15.5.3), we must be able to compute the gradient gftthe
function at any set of parametexsTo use (15.5.2) we also need the mabBipwhich
is the second derivative matrix (Hessian matrix) of {#ffemerit function, at any.
Now, this is the crucial difference from Chapter 10: There, we had no way of z
directly evaluating the Hessian matrix. We were given only the ability to evaluate 5
the function to be minimized and (in some cases) its gradient. Therefore, we ha
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to resort to iterative methodwmt just because our function was nonlinelbuf also %
in order to build up information about the Hessian matrix. Sections 10.7 and 10.6% :

concerned themselves with two different techniques for building up this information. g

Here, life is much simpler. Wknow exactly the form ofy 2, since it is based %

on a model function that we ourselves have specified. Therefore the Hessian matrig

is known to us. Thus we are free to use (15.5.2) whenever we care to do so. Th&

only reason to use (15.5.3) will be failure of (15.5.2) to improve the fit, signaling @

failure of (15.5.1) as a good local approximation. %

=z

Calculation of the Gradient and Hessian %

3

The model to be fitted is %

y = y(z;a) (15.5.4

and thex? merit function is

Y@=y [%@a)r (15.5.5

i=1
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The gradient ofy? with respect to the parameteaswhich will be zero at they?
minimum, has components

o [yi — y(ws;8)] Oy(w4; @) B
___22 g Sas k=1,2,....M (15.5.6

Taking an additional partial derivative gives

9? 1/(171 ) )
6@16%

x* 2ZN: s {ay(mi;a) WD) 1y — ywis )

6ak8al - - 01'2 Bak Bal

} (15.5.7

It is conventional to remove the factors of 2 by defining

B, = 1 92 1 9%y
= - « = =
b 2 Bak M 2 6ak8al

(15.5.9

making [a] = %D in equation (15.5.2), in terms of which that equation can be
rewritten as the set of linear equations

M
Zakz day = Py (15.5.9
=1

This set is solved for the increments,; that, added to the current approximation,
give the next approximation. In the context of least-squares, the njajrigqual to
one-half times the Hessian matrix, is usually calleddiwevature matrix.

Equation (15.5.3), the steepest descent formula, translates to

da; = constantx 5 (15.5.10

Note that the components,; of the Hessian matrix (15.5.7) depend both on the
first derivatives and on the second derivatives of the basis functions with respect t
their parameters. Some treatments proceed to ignore the second derivative witho
comment. We will ignore it also, but onbfter a few comments.

Second derivatives occur because the gradient (15.5.6) already has a dependen
ondy/dayx, so the next derivative simply must contain terms involirtg/da;day,.
The second derivative term can be dismissed when it is zero (as in the linear cas
of equation 15.4.8), or small enough to be negligible when compared to the termg
involving the first derivative. It also has an additional possibility of being ignorably <
small in practice: The term multiplying the second derivative in equation (15.5.7)
s [y; — y(x;;@)]. For a successful model, this term should just be the random
measurement error of each point. This error can have either sign, and should in
general be uncorrelated with the model. Therefore, the second derivative terms tend
to cancel out when summed ovér

Inclusion of the second-derivative term can in fact be destabilizing if the model
fits badly or is contaminated by outlier points that are unlikely to be offset by
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678 Chapter 15.  Modeling of Data

compensating points of opposite sign. From this point on, we will always use as
the definition ofay; the formula

o2 Oay, Oay

=1 1

N
=3 {ay(%; 2 Oytrii8) (15.5.13

dny

This expression more closely resembles its linear cousin (15.4.8). You shoulds
understand that minor (or even major) fiddling wit] has no effect at all on
what final set of parametessis reached, but affects only the iterative route that is
taken in getting there. The condition at ty€ minimum, that3;, = 0 for all k,

is independent of hovla] is defined.

/I

Levenberg-Marquardt Method

Marquard{1] has put forth an elegant method, related to an earlier suggestion of
Levenberg, for varying smoothly between the extremes of the inverse-Hessian metho
(15.5.9) and the steepest descent method (15.5.10). The latter method is used far frog
the minimum, switching continuously to the former as the minimum is approached.
This Levenberg-Marquardt method (also calledMarquardt method) works very well
in practice and has become the standard of nonlinear least-squares routines.

The method is based on two elementary, but important, insights. Consider th
“constant” in equation (15.5.10). What should it be, even in order of magnitude?:
What sets its scale? There is no information about the answer in the gradient. Th
tells only the slope, not how far that slope extends. Marquardt’s first insight is that
the components of the Hessian matrix, even if they are not usable in any precis
fashion, givesome information about the order-of-magnitude scale of the problem.

The quantityy? is nondimensional, i.e., is a pure number; this is evident from
its definition (15.5.5). On the other hand,, has the dimensions df/aj, which
may well be dimensional, i.e., have units like th or kilowatt-hours, or whatever.

(In fact, each component @f;, can have different dimensions!) The constant of
proportionality betweey;, andda;, must therefore have the dimensions:§f Scan

the components dfy] and you see that there is only one obvious quantity with these
dimensions, and that is/«y, the reciprocal of the diagonal element. So that must
set the scale of the constant. But that scale might itself be too big. So let’s divide:
the constant by some (nondimensional) fudge fagtavith the possibility of setting
A > 1to cut down the step. In other words, replace equation (15.5.10) by
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da; = —ﬂl or Aoy da; = ﬂl (15.5.13
Aoy
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It is necessary that;; be positive, but this is guaranteed by definition (15.5.11) —
another reason for adopting that equation.

Marquardt’s second insight is that equations (15.5.12) and (15.5.9) can be
combined if we define a new matrix' by the following prescription

ajy = aj(1+2)

155.1
pzap (K (19543
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and then replace both (15.5.12) and (15.5.9) by

M
> ajy bar = B (15.5.14
=1

When ) is very large, the matrixe’ is forced into beingliagonally dominant, so
equation (15.5.14) goes over to be identical to (15.5.12). On the other hand, as
approaches zero, equation (15.5.14) goes over to (15.5.9).
Given an initial guess for the set of fitted parametardhe recommended

Marquardt recipe is as follows:
Computex?(a).
Pick a modest value fok, say A = 0.001.
() Solve the linear equations (15.5.14) farand evaluate ?(a + da).
If x?(a+ éa) >x?(a), increase A\ by a factor of 10 (or any other
substantial factor) and go back t9).(
o If x*(a+ da) < x?*(a), decrease \ by a factor of 10, update the trial

solutiona «— a+ da, and go back tot.

e 6 o o
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Also necessary is a condition for stopping. Iterating to convergence (to machineg
accuracy or to the roundoff limit) is generally wasteful and unnecessary since thei
minimum is at best only a statistical estimate of the parameterss we will see 3
in §15.6, a change in the parameters that changeby an amount 1 is never 8
statistically meaningful. §

Furthermore, it is not uncommon to find the parameters wandering ;
around near the minimum in a flat valley of complicated topography. The rea- 8
son is that Marquardt’s method generalizes the method of normal equdtidng)( %

hence has the same problem as that method with regard to near-degeneracy of t
minimum. Outright failure by a zero pivot is possible, but unlikely. More often,

a small pivot will generate a large correction which is then rejected, the value of
A being then increased. For sufficiently lar§ehe matrix[a’] is positive definite
and can have no small pivots. Thus the method does tend to stay away from zer
pivots, but at the cost of a tendency to wander around doing steepest descent i
very un-steep degenerate valleys.

These considerations suggest that, in practice, one might as well stop iteratin
on the first or second occasion thgt decreases by a negligible amount, say either
less than0.01 absolutely or (in case roundoff prevents that being reached) some
fractional amount likel0—3. Don’t stop after a step wherg? increases: That only
shows that\ has not yet adjusted itself optimally.

Once the acceptable minimum has been found, one wants td seb and
compute the matrix

@DUER1SN0108.Ip 01 |
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[C] = [a] ! (15.5.15
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which, as before, is the estimated covariance matrix of the standard errors in the
fitted parametera (see next section).

The following pair of subroutines encodes Marquardt’s method for nonlinear
parameter estimation. Much of the organization matches that usadii of
§15.4. In particular the arraya(1:ma) must be input with components one or zero
corresponding to whether the respective parameter valGesna) are to be fitted
for or held fixed at their input values, respectively.



680 Chapter 15.  Modeling of Data

The routinemrgmin performs one iteration of Marquardt's method. It is first
called (once) withalamda < 0, which signals the routine to initializealamda is
returned on the first and all subsequent calls as the suggested valuothe
next iteration;a and chisq are always returned as the best parameters found so
far and theiry2. When convergence is deemed satisfactory,adeinda to zero
before a final call. The matrices pha andcovar (which were used as workspace
in all previous calls) will then be set to the curvature and covariance matrices for
the converged parameter values. The argumelgia, a, andchisq must not be
modified between calls, nor shoudldamda be, except to set it to zero for the final
call. When an uphill step is takenhisq anda are returned with their input (best)
values, butalamda is returned with an increased value.

The routinenrgmin calls the routinearqcof for the computation of the matrix
[a] (equation 15.5.11) and vect6r(equations 15.5.6 and 15.5.8). In tutagcof
calls the user-supplied routifencs (x,a,y,dyda), which for input valuex = x;
anda = a returns the model functiop = y(x;;a) and the vector of derivatives
dyda = 9Jy/day.

dny

SUBROUTINE mrgmin(x,y,sig,ndata,a,ia,ma,covar,alpha,nca,
chisq,funcs,alamda)
INTEGER ma,nca,ndata,ia(ma),MMAX
REAL alamda,chisq,funcs,a(ma),alpha(nca,nca),covar(nca,nca),
sig(ndata) ,x(ndata),y(ndata)

PARAMETER (MMAX=20) Set to largest number of fit parameters.

USES covsrt, gaussj, nr gcof
Levenberg-Marquardt method, attempting to reduce the value x2 of a fit between a set of
data points x(1:ndata), y(1:ndata) with individual standard deviations sig(1:ndata),
and a nonlinear function dependent on ma coefficients a(1:ma). The input array ia(1:ma)
indicates by nonzero entries those components of a that should be fitted for, and by zero
entries those components that should be held fixed at their input values. The program
returns current best-fit values for the parameters a(1:ma), and x2 = chisq. The ar-
rays covar(l:nca,l:nca), alpha(l:nca,l:nca) with physical dimension nca (> the
number of fitted parameters) are used as working space during most iterations. Supply a
subroutine funcs(x,a,yfit,dyda,ma) that evaluates the fitting function yfit, and its
derivatives dyda with respect to the fitting parameters a at x. On the first call provide
an initial guess for the parameters a, and set alamda<O for initialization (which then sets
alamda=.001). If a step succeeds chisq becomes smaller and alamda decreases by a
factor of 10. If a step fails alamda grows by a factor of 10. You must call this routine
repeatedly until convergence is achieved. Then, make one final call with alamda=0, so
that covar(1l:ma,1:ma) returns the covariance matrix, and alpha the curvature matrix.
(Parameters held fixed will return zero covariances.)

INTEGER j,k,1,mfit

REAL ochisq,atry(MMAX) ,beta (MMAX) ,da(MMAX)

SAVE ochisq,atry,beta,da,mfit

if (alamda.lt.0.)then Initialization.
mfit=0
do 11 j=1,ma

if (ia(j).ne.0) mfit=mfit+1
enddo 11
alamda=0.001
call mrqcof(x,y,sig,ndata,a,ia,ma,alpha,beta,nca,chisq,funcs)
ochisqg=chisq
do 12 j=1,ma
atry(j)=a(j)

enddo 12

endif

do 14 j=1,mfit Alter linearized fitting matrix, by augmenting
do 13 k=1,mfit diagonal elements.
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covar (j,k)=alpha(j,k)
enddo 13
covar(j,j)=alpha(j,j)*(1.+alamda)
da(j)=beta(j)

enddo 14
call gaussj(covar,mfit,nca,da,1,1) Matrix solution.
if (alamda.eq.0.)then Once converged, evaluate covariance matrix.
call covsrt(covar,nca,ma,ia,mfit)
call covsrt(alpha,nca,ma,ia,mfit) Spread out alpha to its full size too.
return
endif
j=0
do1s 1=1,ma Did the trial succeed?
if(ia(l).ne.0) then
=3+
atry(1)=a(l)+da(j)
endif
enddo 15
call mrqcof(x,y,sig,ndata,atry,ia,ma,covar,da,nca,chisq,funcs)
if (chisq.lt.ochisq)then Success, accept the new solution.

alamda=0.1*alamda
ochisg=chisq
do17 j=1,mfit
do 16 k=1,mfit
alpha(j,k)=covar(j,k)
enddo 16
beta(j)=da(j)
enddo 17
do 18 1=1,ma
a(l)=atry(1)
enddo 18
else Failure, increase alamda and return.
alamda=10.*alamda
chisg=ochisq
endif
return
END

Notice the use of the routineovsrt from §15.4. This is merely for rearranging
the covariance matrixovar into the order of alma parameters. The above routine
also makes use of

SUBROUTINE mrqcof (x,y,sig,ndata,a,ia,ma,alpha,beta,nalp,
chisq,funcs)
INTEGER ma,nalp,ndata,ia(ma),MMAX
REAL chisq,a(ma),alpha(nalp,nalp),beta(ma),sig(ndata),x(ndata),
y(ndata)
EXTERNAL funcs
PARAMETER (MMAX=20)
Used by mrgmin to evaluate the linearized fitting matrix alpha, and vector beta as in
(15.5.8), and calculate x2.
INTEGER mfit,i,j,k,1,m
REAL dy,sig2i,wt,ymod,dyda(MMAX)
mfit=0
do11 j=1,ma
if (ia(j).ne.0) mfit=mfit+1
enddo 11
do 13 j=1,mfit Initialize (symmetric) alpha, beta.
do12 k=1,j
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alpha(j,k)=0.
enddo 12
beta(j)=0.
enddo 13
chisq=0.
do 16 i=1,ndata Summation loop over all data.
call funcs(x(i),a,ymod,dyda,ma)
sig2i=1./(sig(i)*sig(i))
dy=y (i) -ymod
3=0
do 15 1=1,ma
if(ia(l) .ne.0) then
j=j+1
wt=dyda (1) *sig2i
k=0
do 14 m=1,1
if (ia(m) .ne.0) then
k=k+1
alpha(j,k)=alpha(j,k)+wt*dyda(m)
endif
enddo 14
beta(j)=beta(j)+dy*wt
endif
enddo 15
chisq=chisq+dy*dy*sig2i And find x2.
enddo 16
do 18 j=2,mfit Fill in the symmetric side.
do17 k=1,j-1
alpha(k,j)=alpha(j,k)
enddo 17
enddo 18
return
END

Example

The following subroutineggauss is an example of a user-supplied subroutine
funcs. Used with the above routinergmin (in turn usingmrqcof, covsrt, and
gaussj), it fits for the model

o K T — Ek 2
y(z) = ;Bk exp |— <G—k) (15.5.16

which is a sum ofK" Gaussians, each having a variable position, amplitude, and °

width. We store the parameters in the ordet, £y, Gy, Bo, Fo,Go, ..., Bk,
EK,GK.
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15.5 Nonlinear Models 683

SUBROUTINE fgauss(x,a,y,dyda,na)
INTEGER na
REAL x,y,a(na),dyda(na)
y(x; a) is the sum of na/3 Gaussians (15.5.16). The amplitude, center, and width of the
Gaussians are stored in consecutive locations of a: a(i) = By, a(i+l) = Ei, a(i+2) =
G, k = 1,...,na/3.
INTEGER i
REAL arg,ex,fac
y=0.
do 11 i=1,na-1,3
arg=(x-a(i+1))/a(i+2)
ex=exp (—arg**2)
fac=a(i)*ex*2.*arg
y=y+a(i)*ex
dyda(i)=ex
dyda(i+1)=fac/a(i+2)
dyda(i+2)=fac*arg/a(i+2)
enddo 11
return
END

More Advanced Methods for Nonlinear Least Squares

The Levenberg-Marquardt algorithm can be implemented as a model-trus
region method for minimization (se€f9.7 and ref[2]) applied to the special case

of a least squares function. A code of this kind due to B8t can be found in

MINPACK [4]. Another algorithm for nonlinear least-squares keeps the second-
derivative term we dropped in the Levenberg-Marquardt method whenever it would
be better to do so. These methods are called “full Newton-type” methods an
are reputed to be more robust than Levenberg-Marquardt, but more complex. On

implementation is the code NL2SQ%].
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684 Chapter 15.  Modeling of Data

15.6 Confidence Limits on Estimated Model
Parameters

Several times already in this chapter we have made statements about the standard
errors, or uncertainties, in a set bf estimated parameteas We have given some
formulas for computing standard deviations or variances of individual parameterst

-dny

a(;) therefore occur with some probability distribution in thé-dimensional space
of all possible parameter seds The actual measured st is one member drawn
from this distribution.

Even more interesting than the probability distributionagfy, would be the
distribution of the differenca ;) — asue. This distribution differs from the former
one by a translation that puts Mother Nature’'s true value at the origin. If we thisw
distribution, we would know everything that there is to know about the quantitative
uncertainties in our experimental measurenmaggj.

So the name of the game is to find some way of estimating or approximating %
the probability distribution 0& ;) — asue Without knowingas,.. and without having
available to us an infinite universe of hypothetical data sets.

@ owm

8585

(equations 15.2.9, 15.4.15, 15.4.19), as well as some formulas for covz;tnance%f%jr éEﬁ
between pairs of parameters (equation 15.2.10; remark following equation 15.4.15% 25 58
SO0

equation 15.4.20; equation 15.5.15). gzany
In this section, we want to be more explicit regarding the precise meaning§ % %i

of these quantitative uncertainties, and to give further information about how g3 58S
guantitative confidence limits on fitted parameters can be estimated. The subjeog X EE
can get somewhat technical, and even somewhat confusing, so we will try to makes S Qg
precise statements, even when they must be offered without proof. =t %ﬁ
Figure 15.6.1 shows the conceptual scheme of an experiment that “measuresgg <§%

a set of parameters. There is some underlying true set of pararagtgrshat are Lesch
known to Mother Nature but hidden from the experimenter. These true parameteraf% 5z
are statistically realized, along with random measurement errors, as a measured dagas 3’3;;
set, which we will symbolize &b ). The data seP ) isknown to the experimenter. EE § ;;3'
He or she fits the data to a model ¥ minimization or some other technique, and § = oz
obtains measured, i.e., fitted, values for the parameters, which we here dgjjote %2, &3
Because measurement errors have a random compdngyjtis not a unique 92 S
realization of the true parameteas,,.. Rather, there are infinitely many other ﬁg =
realizations of the true parameters as “hypothetical data sets” each of eduich g% §3
have been the one measured, but happened not to be. Let us symbolize theseg ‘%%
by D(1),D(2y,.... Each one, had it been realized, would have given a slightly @g
different set of fitted parameteray,), a2y, . . ., respectively. These parameter sets %%
g3

£S5

E

3R

s b

X
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Monte Carlo Simulation of Synthetic Data Sets

Although the measured parameter agf, is not the true one, let us consider
a fictitious world in which itwas the true one. Since we hope that our measured
parameters are ntbo wrong, we hope that that fictitious world is not too different
from the actual world with parameteas, .. In particular, let us hope — no, let us
assume — that the shape of the probability distributian;) — a) in the fictitious
world is the same, or very nearly the same, as the shape of the probability distribution



